

Protecting TSM Data with Incremental Exports Attaining Higher Resilience

B. Dozier - IBM IGS Switzerland

© 2005 IBM Corporation

DISCLAIMER

- The content of this presentation reflect my own experience and opinions, and not those of IBM.
- In no circumstances shall IBM be held responsible for their accuracy.

Bart Dozier - 2005

Levels of Protection

- Protection against software corruption
 - DB Backups of the TSM database
- Protection against hardware and media failure
 - Mirroring of DB, Log
 - Make a copy of backups to a Copy Stg Pool
- Protection against site disaster
 - Do it with remote copies
 - Protection against human error / malicious attacks

Hard Disk

Library Sharing

Sharing Tape drives and library slots between multiple TSM servers

- Tape volumes are not shared.
- Only valid in a SAN with Fibre attached tape drives.

Advantages:

- Performance
- Ease of use
- Resilience

Constraint:

A SAN is required

Virtual Volumes

- Employing a secondary TSM server to store the primary TSM server's data
- The data is stored as Virtual Volumes
 - Appear as sequential media volumes on the source server
 - Actually stored as archive files on the target server

Advantages

New nodes integrate easily into the schema

Drawbacks

- Complex to understand
- Many tiny volumes....

Export / Import

- Can export/import as a single operation
 - data transmits over the LAN
- Can merge data into an existing filespace
- Can take data new since a date and/or time
- Can specify a node, a list of nodes, a Domain

Advantages of Export / Import

- Increased resilience
 - Truly independent copies ensures that software corruption or human error are not duplicated
 - No need to restore a TSM Database

Disadvantages of Export / Import

- Not a true incremental
 - The TSM Administrator is responsible to ensure data is copied.
- Interference with other processes
 - Expiration, backup, restore
- All or nothing
 - One unreadable tape will render the whole export futile
- Performance ...
 - Benchmark at the end of the presentation
- Hangs ...

Considerations of Export / Import on the target TSM Server

- Expiration takes place only if filedata=all is specified
 - Schedule it regularly
- Management Class Rebinding does not take place.
- Retention policies need not be the same as on the source TSM server.

Case Study 1

- Document Management System which uses TSM on AIX as the document repository (IBM DB2 Content Manager Ondemand)
- Documents loaded during the night
- Many online users during the day
- Data stored on WORM media and magnetic disk.
- Recovery requirements: 10-20 minutes in case of hardware failure, software failure, site failure

Solution

- One production server, one standby server
- DB2 database is synchronised nightly
- TSM data is copied nightly using Incremental Export

Case Study 1 (cont)

Failover

- In case of a problem with TSM, tape library or server:
 - > A second server entry in OnDemand allows for read-only access
- In case of site failure:
 - The production server is taken down.
 - > DNS is updated.

Advantages

- Resilient: data is replicated without replicating corruptions
- Efficient: only latest data is replicated
- Automated: TSM can remain a black box

Case Study 2

- Document Management System which uses TSM on Windows as the document repository (IBM DB2 Content Manager OnDemand)
- Documents loaded during the night and day
- Many online users during the day
- Data stored on magnetic disk only (except for Copy Stg).
- Recovery requirement: 2-10 minutes in case of hardware or software failure, 1 hour in case of site failure

Solution

- Protection against site failure:
 - DB2 & TSM DB and Disk Stg Pools are replicated using DoubleTake.
- Protection against hardware failure:
 - Local Copy StgPool on tape media.
- Protection against human or software error:
 - Incremental Export of selected data to a third TSM server

Case Study 2 (cont)

Failover

- In case of a problem with hardware, site failure :
 - The production server is taken down.
 - > DNS is updated.

Advantages

- Data is replicated quasi-instantly
- DoubleTake provides failback functionality

Benchmark of Export vs Virtual Volumes

Setup

- TSM 5.3.1.2 on AIX 5.3 ML02.
- pSeries 650 partitioned with 2 CPU, 1 GB RAM,
 - > 2 TSM instances on the same system
- 2 FC adapters for tape, 2 FC adapters for disk traffic
 - >No tape access during the tests
- DB & Log volumes on HDS 9980
- Volumes of DevClass FILE on HDS 9500
 - > Pre-formatted at 2GB / volume

Benchmark of Export vs Virtual Volumes Scenario

- Step 1 Incremental export of workload to FILE STG in TSM1
- Step 2 Virtual Volumes between TSM1 and TSM2
 - Backup stg primaryStg copyStg (maxproc=1, mountLimit=4)
- Step 3 Export from TSM1 to TSM2
 - Export node toserver=tsm2 filedata=all merge=yes
- Step 4 Add 2'800 files to workload
- Repeat steps 1 & 2
- Step 3 Incremental export
 - >Export node toserver=tsm2 filedata=all merge=yes fromdate= fromtime=

Notes: No other activities during the tests

Benchmark of Export vs Virtual Volumes Workload

Base workloads

```
>A: 10'000 files 100k each (0.98 GB)
```

>B: 100'000 files 100k each (9.98 GB)

>C: 1'000 files 1 MB each (0.97 GB)

>D: 10'000 files 1 MB each (9.60 GB)

>E: 100 files 100 MB each (9.64 GB)

Notes: no TSM compression, jpeg data

Performance comparison – Results

(seconds)

Workload			client	ent Virtual Volumes		Incr Export		Other tasks	
File size	No.File	GB	Incr	Full	(+2'800)	Full	(+2'800)	Backup- set	Move nodedata
<i>A</i> 100k	10'000	1	54	23		26			23
B 100k	100'000	10	367	192	4	246	12		350
C 1MB	1'000	1	19	17		13			21
D 1MB	10'000	10	196	188	56	196	58	254	240
E 100MB	100	10	138	183		184	,		350

Conclusion

- Incremental Export is a promising technique for protecting TSM data
- Bonus benefit
 - A second set of retention policies are offered
- Wish list:
 - Capability to ensure consistency between two TSM servers
 - Less contention with other processes

