
9/10/2003

1

Robert Brilmayer, PLCS/STORServer
Laura Buckley, STORServer
Andy Raibeck, IBM

IBM TSM SQL Workshop
(A Practical Approach)

2

Agenda

Brief SQL tutorial
Anatomy of a SQL Database
TSM’s SQL Interface

SELECT Syntax
Clauses, Operators and Functions
Basic Joins

Challenge us…

9/10/2003

2

3

A Brief SQL
Tutorial

Structured Query Language maintained by
ANSI
Used to communicate with databases
Universal interface that can:

View (select)
Manipulate (fetch,update)
Add (insert) data to databases*

*TSM’s SQL Interface only supports viewing data (select)

4

Anatomy of a
Relational Database

In a relational database, one piece of
information relates to another
Data is stored in columns in tables
The data in a column in one table can relate to
data in a column in another table
A row represents a single entry in a table

9/10/2003

3

5

Example of a Table

DOMAIN_NAME SCHEDULE_NAME NODE_NAME CHG_TIME CHG_ADMIN
EXCHANGE DAILY_FULL EXCH_STORMAIL 7/29/2003 13:21 ADMIN
MOBILE DAILY_INCR BEBO 5/7/2003 16:30 ADMIN
MOBILE DAILY_INCR ROSEBUD 5/7/2003 16:30 ADMIN
PRODUCTON DAILY_INCR SSHQ 5/7/2003 17:12 ADMIN

TABLE = ASSOCIATIONS
COLUMNS

ROWS

6

Relationships
Between Tables

ASSOCATIONS
DOMAIN_NAME SCHEDULE_NAME NODE_NAME CHG_TIME CHG_ADMIN
EXCHANGE DAILY_FULL EXCH_STORMAIL 7/29/2003 13:21 ADMIN
MOBILE DAILY_INCR BEBO 5/7/2003 16:30 ADMIN
MOBILE DAILY_INCR ROSEBUD 5/7/2003 16:30 ADMIN
PRODUCTON DAILY_INCR SSHQ 5/7/2003 17:12 ADMIN
PRODUCTON DAILY_INCR SSEXT 5/7/2003 17:12 ADMIN

CLIENT_SCHEDULES
DOMAIN_NAME SCHEDULE_NAME DESCRIPTION ACTION OBJECTS STARTDATE STARTTIME DURATION
EXCHANGE DAILY_FULL COMMAND c:\progra\~ 7/29/2003 23:10:00 10
MOBILE DAILY_INCR Daily increment INCREMENTAL 11/14/2001 0:00:00 23
PRODUCTON DAILY_INCR Daily increment INCREMENTAL 11/14/2001 0:00:00 8
PRODUCTON TEST testing options INCREMENTAL 7/11/2003 16:27:48 1
SQL DAILY_FULL MSSQL agent bCOMMAND c:\progra\~ 7/3/2003 23:30:00 2
SQL STORBASE_FULL MSSQL agent bCOMMAND c:\progra\~ 6/2/2003 22:00:00 15
STANDARD ARCH-TEST ARCHIVE e:* d:* 5/30/2003 16:17:00 1
STANDARD DAILY_INCR Daily increment INCREMENTAL 11/14/2001 0:00:00 8

9/10/2003

4

7

TSM SQL Interface

Supports the SQL SELECT query only
Requires a “minimum” of 4MB of free space
in the database
Complicated queries may take a long time to
complete and can interfere with server
operations
You cannot issue SELECT queries from the
server console (admin command line only)

8

TSM SQL Interface

“Mostly” conforms to standard SQL
Subset of the SQL92 and SQL93 ANSI standards

Does NOT support:
UNION
INTERSECT
EXCEPT
Correlated subqueries (returning multiple values)
Semicolon cannot be used as a command
terminator

9/10/2003

5

9

SELECT Syntax

SELECT column|expression [,n..]
FROM tablename {,n…}

column refers to a column in a table (
* is allowed as a wildcard to select all columns in a table

expression refers to functions that allow you
manipulate the data being returned
[,n…] indicates that you may specify one or more
columns or expressions
FROM clause indicates which table to search
You can specify one or more tablenames

10

Simple SELECT
Example

SELECT STARTTIME
FROM CLIENT_SCHEDULES

Display the contents of the STARTIME column from
every row in the CLIENT_SCHEDULES table
Column and table names cannot be abbreviated
Column names are displayed in the order they are
entered on the SELECT statement
Much of the data in TSM is stored in uppercase and
must be entered in uppercase in SELECT statements

9/10/2003

6

11

TSM Database
Catalog

TSM has three system catalog tables so
that you can view the tables, columns
and enumerated data types available

SYSCAT.TABLES
SYSCAT.COLUMNS
SYSCAT.ENUMTYPES

12

Viewing the TSM
System Catalog

To view available table names:
SELECT * FROM SYCAT.TABLES

To view all column names within tables
SELECT tabname,colname FROM
SYSCAT.COLUMNS
To view the valid values and order for
enumerated types

SELECT * FROM SYSCAT.ENUMTYPES

9/10/2003

7

13

Manipulating the
Results

You may not want all of the data in all of
the columns all of the time so:

SQL provides clauses, operators, and
functions
These allow you to sort, order, filter, and
compute the data on a select command

14

Clauses, Operators,
and Functions

NULLFROMCOUNT

WHEREMINEXTRACTCAST

TRIMMAXEXISTSCASE

SUMLIKEDISTINCTBETWEEN

SUBSTRINGJOINCURRENT_USERAS

SOMEINCURRENT_TIMESTAMPAVG

POSITIONHAVINGCURRENT_TIMEANY

ORDER BYGROUP BYCURRENT_DATEALL

*Supported by TSM SELECT

9/10/2003

8

15

Clauses (not the
Santa kind..)

A clause is a part of a SQL statement
(i.e. SELECT column1,column2)
Clauses combine to form an entire SQL
statement
For example, you can combine the
SELECT clause and FROM clause to
form a statement

SELECT also refers to the statement itself

16

WHERE Clause

The WHERE clause allows you to filter out
rows from the results

I want this, this and this, but only where this
condition is true
I want to see all the volumes on which the client
called CARROLL has data:

SELECT NODE_NAME,VOLUME_NAME
FROM VOLUMEUSAGE
WHERE NODE_NAME=‘CARROLL’

9/10/2003

9

17

Comparison
Operators (use with

WHERE)

LOGICAL_MB >= 5000Greater than or equal to>=

LOGICAL_MB <= 5000Less than or equal to<=

LOGICAL_MB > 5000Greater than>

LOGICAL_MB < 5000Less than<

NODE_NAME<>’CARROLL’Not Equal<>

NODE_NAME=‘CARROLL’Equal=

VERSION IS NOT NULLNot equal (used with NULL)IS NOT

NODE_NAME IS NULLEqual (used with NULL)IS
Example (WHERE)DescriptionOperator

18

Logical Operators

Logical operators separate two or more
conditions in the WHERE clause

LIKE is used with the wildcard % to match all
occurrences
SELECT * FROM NODES
WHERE NODE_NAME LIKE ‘C%’

AND means that the expressions on both sides
must be true to return TRUE
SELECT * FROM NODES WHERE
NODE_NAME=‘CARROLL’ AND
PLATFORM_NAME=‘WinNT’

9/10/2003

10

19

More Logical
Operators

You can use OR to sum up a series of conditions. If
any of the comparisons is true, OR returns TRUE
SELECT * FROM NODES
WHERE NODE_NAME=‘CARROLL’ OR ‘DODSON’

Use IN to replace multiple OR’s
SELECT * FROM NODES WHERE NODE_NAME
IN(‘CARROL’,’DODSON’,’LEWIS’,’CHARLES’)

Use BETWEEN to get a range
SELECT NODE_NAME FROM OCCUPANCY
WHERE LOGICAL_MB BETWEEN 5000 AND 10000

20

ORDER BY Clause

The ORDER BY clause is used to sort the rows prior
to displaying them:
SELECT NODE_NAME, PLATFORM_NAME
FROM NODES
ORDER BY PLATFORM NAME

You can specify that the results be sorted in ascending
or descending order:
SELECT NODE_NAME, TYPE, FILESPACE_NAME,
LOGICAL_MB FROM OCCUPANCY
ORDER BY LOGICAL_MB DESC

9/10/2003

11

21

Functions

Functions allow you to aggregate data and
operate on strings, numeric and date and time
values
Aggregate functions perform operations on
values from selected rows to produce a single
value.

They include COUNT(*), SUM, AVG, MAX, and
MIN.
COUNT(*) is useful for finding the number of rows
that match a query.

22

Timestamp and
CAST Functions

Example of date/time and cast function –
displays nodes that have not accessed
the server in a specified ($1) number of
days
CAST’s the timestamp as decimal for
processing

SELECT NODE_NAME,LASTACC_TIME FROM NODES
WHERE - CAST((CURRENT_TIMESTAMP-
LASTACC_TIME)DAYS AS - DECIMAL) >= $1

9/10/2003

12

23

GROUP BY Clause

The GROUP BY clause allows you to combine
the rows being selected into logical groups
Normally used with aggregate functions
SELECT NODE_NAME, SUM(NUM_FILES) AS
#_OF_FILES, SUM(LOGICAL_MB) AS
TOTAL_MB FROM OCCUPANCY GROUP BY
NODE_NAME

When using aggregate functions, you need to
name the columns (i.e. AS #_OF_FILES)

24

HAVING Clause

HAVING always follows the GROUP BY
clause
Use the HAVING clause to filter the
results of the GROUP BY clause
SELECT NODE_NAME, SUM(NUM_FILES) AS
#_OF_FILES, SUM(LOGICAL_MB) AS
TOTAL_MB FROM OCCUPANCY GROUP BY
NODE_NAME HAVING SUM(LOGICAL_MB)>1000

9/10/2003

13

25

Joining Tables

Helps you see how data relates between
tables
There are different types of joins, depending
on the data you are trying to relate
Use an alias to specify which column you want
to display when joining tables with columns of
the same name
The keyword DISTINCT specifies only unique
rows will be retrieved and prevent duplicates

26

JOIN Example

To see which schedules a node is associated
with join ASSOCATIONS with
CLIENT_SCHEDULES
DOMAIN_NAME and SCHEDULE_NAME are
common columns
We’ll use the alias C.SCHEDULE_NAME, to
indicate which SCHEDULE_NAME to return

9/10/2003

14

27

Join Example -
continued

SELECT DISTINCT NODE_NAME,C.SCHEDULE_NAME
FROM ASSOCIATIONS A, CLIENT_SCHEDULES C
WHERE A.SCHEDULE_NAME=C.SCHEDULE_NAME

This is an example of an inner join or equi-join
The goal is to match the values of a column in
one table to the corresponding values in the
second table (schedule_name)

28

Challenge Us

That’s was just an overview of TSM SQL
and some basic examples
There is a lot more you can do with the
tool
We are now going to present some of the
solutions to questions you provided
earlier in the week

9/10/2003

15

29

SQL References

TSM SQL Guide
More info on clauses, operators, and
functions
More examples
Using ODBC

ADSM.ORG
SQL Books and self-study courses

